Proceedings of the Jangjeon Mathematical Society www.jangjeon.or.kr
20 (2017), No. 3. pp. 391 - 396 http://dx.doi.org/10.17777/pjms2017.20.3.391

A General Volterra-type Integral Equation Associated with an

Integral Operator involving the product of general class of polynomials and
multivarible H-Function in the Kernel

Praveen Agarwal, Priyanka Harjule and Rashmi Jain

Department of Mathematics, Anand International College of Engineering,
Jaipur-303012, Republic of India

E-Mail:goyal.praveen2011@gmail.com,

Department of Mathematics, Malaviya National Institute of Technology,
Jaipur 302017, Rajasthan, India

E-Mail: priyankaharjule5@gmail.com rashmiramesshl@gmail.com

Abstract

In this paper, we solve a general Volterra-type fractional equation associated with an integral
operator involving a product of general class of polynomials and the multivariable H-function
in its Kernel. We make use of convolution technique to solve the main equation.On account
of the general nature of multivariable H-function and general class of polynomials, We can
obtain a large number of integral equations involving products of several useful polynomials
and special functions as its special cases. For the lack of space, we record here only two such
special cases which involve the product of general class of polynomialsS% & Appell’s function
F3 and a general class of polynomials. The main result derived in this paper also generalizes
the results obtained by Gupta et. al.[2] and Jain[3, p. 102-103, eq. (3.5),eq.(3.6)]
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1 INTRODUCTION

General class of polynomials: Srivastava [4, p.1 eq. (1)] has introduced the general class of polynomials
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where M is an arbitrarty positive integer, and the coeflicients Ay g(N, R > 0) are arbitrary constants, real
or complex. On suitably specializing the coefficients Ay g, S¥ [z] yields a number of known polynomials
as its special cases. These include, among others, Jacobi polynomial, Laguerre polynomial and several
others[8, p. 158-161].

Multivarible H-function: A special case of the H-function of r variables is defined as follows:(7, p.271,
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Or equivalently[6, p.64, eq.(1.3)]
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For the convergence, existence conditions and other details of other details of the multivariable H-function
refer the book[5, p.251-253, eq. (C.2)-(C.8)]
Laplace transform: The following property of Laplace transform[1, p.131]:

d o { [F@)](s)} = (=1)" L[2" f(2)] (s), (1.6)
holds provided that f®(0) =0, i=0,1,2,....,n— 1,n being a positive integer, where
@I = [T f@ar (70> 0), (17)

The well-known convolution theorem for Laplace transform

{/fx—u ws}=quxﬂumm»} (1.8)

holds provided that the various Laplace transforms occuring in (1.8) exist.
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2 MAIN RESULT

A general volterra-type integral equation associated with an integral operator involving a product of general
class of polynomials and multivariable H-function in its kernel is given by:
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o) = [0 lzm+x—%g(l)(t>dt (2.10)

whereR(l — 8 —p) >0
provided that
g (0) =0 for 0<i <1—1, 1 being a positive integer and v — 3 is an integer. Also
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0, i1 > [2]
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Proof. To solve (2.9) we first take Laplace transform of its both sides. We easily obtain by definition of
Laplace transform and its convolution property stated in (1.8), the following result
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Now expressing the S¥[—z,+1z] and H | . involved in (2.17) in series using (1.1) and (1.3), changing
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the order of series and integration and evaluating the z—integral, we obtain
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where A(k1, ..., ky41) is defined by (2.13).

Re-writing (2.18), we get
o0
- |:Z s 4 as™ P Y(s) = G(s) (2.19)
B=0

where \p is given by (2.12).
Again, (2.19) is equivalent to
o -1
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If 1 denotes the least B for which Ap # 0, the series given by (2.20) can be reciprocated.
Writing
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(2.20) takes the following form:
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(2.22) can be written as (using (1.6))
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Now using the convolution theorem in the RHS of (2.23) we get
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Finally, on taking the inverse of the Laplace transform of both sides of (2.24) we arrive at the desired result
(2.10). ]
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Remark 1:It is interesting to note that, if we put a = 0 in (2.9) we get the result obtained by Gupta
et al[2].

2.1 SPECIAL CASES

1. If we put r = 2 in (2.9) and reduce the H-function of two variables thus obtained to Appell’s function
F3 [5, p.89, eq.(6.4.6)]we find after a little simplification that the Volterra-type integral equation given by

/0 (x — t)'3 15’ [—2zps1(x — t)]Fg[cgl ,cg ), cél), cg); b; —z1(x — t), —z2(z — t)]y(t)dt
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has the solution
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whereR(l — 8 — p) > 0,R(B8) > 0,]| 21(x — ) |[< 1,] 22(x — ¢) |[< 1

provided that

g®(0) =0 for 0 < i <1—1,1 being a positive integer and v — 8 is an integer and Ej; are given by the
relation (2.11) and p is least B for which Ag # 0
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2. Ifweput r =1,p=¢q =0,220 = —1 in the LHS of (2.9), and further reduce the Fox’s H-function thus
obtained to e™*[5, p.18, eq. (2.6.2)] and let z; — 0, the Fox’s H-function reduces to unity then we arrive
at the following special case of (2.9):

"

/0 <x7t)ﬁflsz’v”uxft)]y(t)dwm/o (z — 1) y(t)dt = g(x) (2.30)

has the solution

) = [ lzm+x—%g<‘><t>dt (231)

whereR(l — 3 — u) > 0,R(8) >0
provided that
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g®(0) =0 for 0 < i <1—1,1 being a positive integer and v — 8 is an integer and Ej; are given by the
relation (2.11) and y is least k for which A\, # 0

(=N)mEAN T (B + k)
k!

e = (2.32)

k=0,1,.. [N/M],N=0,1,2,..,
Remark 2: If we put a =0 in (2.30) we get the result obtained by Jain[3, p. 102-103, eq. (3.5),eq.(3.6)]
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